Three New Alkaloids from the Traditional Chinese Medicine ChanSu

by Run-Hui Liu^a)¹), Heng Luo^b)¹), Yong-Li Li^a), Ming Yang^b), Hui-Liang Li^a), Yun-Heng Shen^a), Chuan Zhang^a), Juan Su^a), and Wei-Dong Zhang^{*a})^c)

^a) Department of Phytochemistry, School of Pharmacy, Second Military Medical University, Shanghai 200433, P. R. China

(phone: +86-21-25070386; fax: +86-21-25070386; e-mail: WDZhangY@hotmail.com) ^b) Key Laboratory of modern preparation of TCM, Ministry of education, Jiangxi University of TCM, Nanchang 330004, P. R. China

^c) School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200030, P. R. China

Three new alkaloids, named bufoserotonins A-C(1-3), were isolated from the traditional Chinese medicine ChanSu. Their structures were elucidated on the basis of spectroscopic analysis, especially of 2D-NMR data.

Introduction. – ChanSu, also called toad venom or toad poison, is an important traditional Chinese medicine (TCM) prepared from the skin secretions of giant toads, including *Bufo bufo gargarizans* CANTOR and *B. melanostictus* SCHNEIDER. It is one of the major components of many well-known patent TCM drugs like Liu-Shen-Wan, She-Xiang-Bao-Xin-Wan, and Chan-Su injection, and is frequently used in clinics to treat heart failure, sores, pains, and various cancers [1]. Chemical studies of toad venom showed that bofotoxins, bufogenins, and indole alkaloids were the main and characteristic constituents [2]. Within the scope of our continuous interest in traditional Chinese medicine, we examined the BuOH-soluble fraction of ChanSu, leading to the isolation of three new indole alkaloids: bufoserotonins A-C (1–3). This paper describes the isolation and structure elucidation of the new indole alkaloids.

Results and Discussion. – Bufoserotonin A^2) (1) was obtained as colorless amorphous solid. It gave a positive *Dragendorff* reaction for alkaloids. The HR-ESI-MS determined its empirical molecular formula $C_{11}H_{13}N_3O_2$ (from $[M+H]^+$ at m/z220.1091). The UV (MeOH) spectrum (221, 277, and 300 nm) showed the presence of an indole chromophore [3]. By means of ¹H- and ¹³C-NMR (*Tables 1* and 2), ¹H,¹H-COSY, HMQC, and HMBC (*Fig. 1*) data, bufoserotonin A^2) was structurally elucidated to be *N*-[2-(5-hydroxy-1*H*-indol-3-yl)ethyl]urea (1).

The ¹H-NMR spectrum of **1** displayed signals of protons due to an *ABX*-type aromatic ring (δ (H) 7.11 (d, J = 8.6 Hz); 6.83 (d, J = 2.1 Hz); 6.65 (dd, J = 8.6, 2.1 Hz)) and an olefinic-proton at δ (H) 7.02 (d, J = 1.8 Hz), suggesting that the indole unit was disubstituted. Four CH₂ protons at δ 3.23 (q, J = 7.0 Hz, 2 H) and 2.60 (t, J = 7.0 Hz, 2 H) showed the presence of a CH₂CH₂ unit, connected to the indole ring at

© 2007 Verlag Helvetica Chimica Acta AG, Zürich

¹) The first two authors contribute equally to the work of the paper.

²) Arbitrary numbering; for systematic names, see *Exper. Part.*

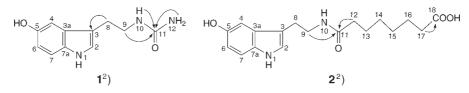


Fig. 1. Structures and key HMBC correlations $(H \rightarrow C)$ of 1 and 2

Table 1. ¹*H*-*NMR Data* (500 MHz, (D₆)DMSO) of Compounds $1-3^2$). δ in ppm, J in Hz.

	1	2	3
H-N(1)	10.51 (s)	10.67 (s)	10.51 (s)
H-C(2)	7.02 (d, J = 1.8)	7.01 $(d, J = 1.8)$	6.97 (d, J = 2.3)
H-C(4)	6.83 $(d, J = 2.1)$	6.82 (d, J = 2.0)	6.98 (d, J = 2.2)
H-C(6)	6.65 (dd, J = 8.6, 2.1)	6.58 (dd, J = 8.5, 2.0)	6.59 (dd, J = 8.6, 2.2)
H-C(7)	7.11 (d, J = 8.6)	7.11 (d, J = 8.5)	7.10 (d, J = 8.6)
$CH_2(8)$	2.69(t, J = 7.0)	2.70(t, J = 7.0)	2.90(t, J = 7.6)
$CH_2(9)$	3.23 (q, J = 7.0)	3.28 (q, J = 7.0)	4.41(t, J = 7.6)
H - N(10)	6.06 (t, J = 5.6)	7.84(t, J = 5.0)	
$NH_2(12)$	5.45 (s)		
H - C(11)			7.29 (d, J = 1.7)
$CH_2(12)$		2.05 (t, J = 7.0)	
$CH_2(13)$ or $H-C(13)$		1.46 - 1.50 (m)	6.89(d, J = 1.7)
$CH_2(14)$		1.22 - 1.26 (m)	
$CH_2(15)$		1.22 - 1.26 (m)	
$CH_2(16)$		1.46 - 1.50 (m)	
$CH_2(17)$		2.15 (t, J = 7.0)	
H-N(1')			9.93 (s)
Me(3')			1.95(s)
Me(2")			2.38 (s)

C(3), as established by the analysis of the ¹H,¹H-COSY and HMQC data. The ¹³C-NMR spectrum showed 11 signals (2 CH₂ (sp³), 4 CH (sp²), and 5 C (sp²)) (see *Table 2*). A *s* at δ 158.6 was assigned to a C=O group. The HMBC correlations (*Fig. 1*) from δ (H) 3.23 (*q*, CH₂(9)), 5.45 (*s*, NH₂(12)), and 6.06 (*t*, H–N(10)) to the C=O signal at δ (C) 158.6 (C(11)) revealed that **1** was a derivate of urea.

Compound **2** exhibited a quasimolecular-ion peak at m/z 333.1819 ($[M + H]^+$) in the HR-MS, which corresponded to the molecular formula $C_{18}H_{24}N_2O_4$. It also gave a positive *Dragendorff* reaction for alkaloids. Comparing with **1**, the UV data and NMR spectra (*Tables 1* and 2) of **2** also showed the presence of a 3,5-disubstituted indole unit, and comparison with bufobutanoic acid [4] unambiguously determined **2** to be 8-{[2-(5-hydroxy-1*H*-indol-3-yl)ethyl]amino}-8-oxooctanoic acid, named bufoserotonin B²).

The ¹H-NMR data of **2** were similar to those of bufobutanoic acid (=4-{[2-(5-hydroxy-1*H*-indol-3-yl)ethyl]amino}-4-oxobutanoic acid) [4], except for four additional CH₂ groups (δ (H) 1.46–1.50 (*m*, 4 H); 1.22–1.26 (*m*, 4 H)) in **2**, which were bound to each other as established by the analysis of ¹H,¹H-COSY, NOESY, and HMBC data. The HMBC long-range correlations (*Fig. 1*) from protons due to two of the four CH₂ groups at δ (H) 1.46–1.50 (*m*, CH₂(13) and CH₂(16)) to the two C=O groups at δ (C)

Helvetica Chimica Acta – Vol. 90 (2007)

	1	2	3
C(2)	123.0	123.0	123.5
C(3)	110.9	110.9	109.8
C(3a)	127.8	127.9	127.8
C(4)	102.2	102.2	102.4
C(5)	150.1	150.1	150.2
C(6)	111.2	111.2	111.3
C(7)	111.5	111.6	111.6
C(7a)	130.7	130.7	130.7
C(8)	26.1	25.4	27.5
C(9)	39.8	39.4	49.4
C(11)	158.6	171.9	120.8
C(12)		35.5	122.9
C(13)		25.2	110.2
C(14)		28.5	126.4
C(15)		25.2	
C(16)		24.8	
C(17)		34.8	
C(18)		172.3	
C(2')			166.7
C(3')			23.0
C(1")			187.3
C(2")			27.1

Table 2. ¹³C-NMR Data (125 MHz, (D₆)DMSO) of Compounds $1-3^2$). δ in ppm.

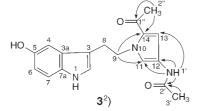


Fig. 2. Structure and key HMBC correlations $(H \rightarrow C)$ of **3**

171.9 (C(11)), and 172.3 (C(18)) indicated that the succinyl moiety of bufobutanoic acid was replaced by a suberoyl (=octanedioyl) moiety in 2.

Compound **3** was obtained as brown amorphous solid, and showed a positive *Dragendorff* reaction for alkaloids. The ion at m/z 348.2 ($[M + Na]^+$) in the ESI-MS was in agreement with the formula $C_{18}H_{19}N_3O_3$, which was confirmed by the HR-ESI-MS ($[M + Na]^+$ ion at m/z 348.13352). Comparing the UV data and NMR spectra (*Tables 1* and 2) of **3** with those of **1** and **2**, **3** was also identified as a derivative of a 3-ethyl-substituted indole. Further data (*Fig. 2*) established the structure of **3** as *N*-{5-acetyl-1-[2-(5-hydroxy-1*H*-indol-3-yl)ethyl]-1*H*-pyrrol-3-yl}acetamide, named bufoserotonin C²).

The ¹H-NMR resonances of **3** at δ (H) 7.29 (d, J = 1.7 Hz, H-C(11)), 6.89 (d, J = 1.7 Hz, H-C(13)), 2.38 (s, Me(2'')), and 1.95 (s, Me(3')) showed HMQC cross-peaks with δ (C) 120.8 (C(11)), 110.2 (C(13)),

27.1 (C(13)), and 23.0 (C(3')), respectively. The ¹³C-NMR spectrum showed additional four signals in the downfield region at δ (C) 187.3 (C(1'')), 166.7 (C(2')), 126.4 (C(14)), and 122.9 (C(12)). The HMBC long-range correlations (*Fig. 2*) δ (H) 7.29/ δ (C) 122.9 (C(12)), 110.2 (C(13)), and 126.4 (C(14)), and δ (H) 6.89/ δ (C) 120.8 (C(11)) and 126.4 (C(14)) indicated that there was a pyrrole ring in **3** (see *Exper. Part*). The HMBC correlations δ (H) 9.93 (H–N(1'))/ δ (C) 166.7 (C(2')), 110.2 (C(13)), 120.8 (C(11)), and 122.9 (C(12)), δ (H) 1.95/ δ (C) 166.7 (C(2')), and δ (H) 2.38/ δ (C) 187.3 (C(1'')) and 126.4 (C(14)) suggested the presence of an acetyl and acetamide moiety, bound to C(14) and C(12) of the pyrrole ring, respectively. The location of the ethyl substituent at the N-atom of the pyrrole moiety was confirmed by the HMBC cross-peaks δ (H) 4.41 (CH₂(9))/ δ (C) 120.8 (C(11)) and 126.4 (C(14)).

The work was supported by the program for *Changjiang Scholars and Innovative Research Team in University* (PCSIRT), the *National 863 Program* (2006AA02Z338), and in part, by the *Scientific Foundation of Shanghai China* (04DZ19856, 06DZ19717, 06DZ19005).

Experimental Part

General. Column chromatography (CC): Sephadex LH-20 (Pharmacia Fine Chemicals, Piscataway, NJ, USA), ODS (25–40 μ ; Merck), MCI gel CHP-20P (75–150 μ m, Mitsubishi Chemical Industries, Tokyo, Japan), or silica gel (200–300 mesh; Qingdao Marine Chemical Plant, China). HPLC: Shimadzu 2010 apparatus; semi-prep. column (Zorbax SB-C18, 9.4 × 250 mm; Agilent, USA). M.p.: RY-2 apparatus (Analytical Instruments Co., Tianjin, China); uncorrected. UV Spectra: Shimadzu UV-210A; λ_{max} in nm. NMR Spectra: Bruker NMR spectrometer DRX-500; 500 (¹H) and 125 MHz (¹³C)); in (D₆)DMSO; δ in ppm rel. to SiMe₄, J in Hz. HR-ESI-MS: Q-TOF-Micro-Mass spectrometer.

Material. Thin-plate ChanSu was purchased from *Nantong Jianqiao* pharmaceuticals company in Jiangsu Province, China, in November 2004, and authenticated by Prof. *Han-Ming Zhang* of the Department of Pharmacognosy of this college. It appears as a dark brown rectangular thin plate ($23 \text{ cm} \times 10 \text{ cm} \times 0.1 \text{ cm}$). A voucher specimen (20041125) has been deposited at the Herbarium of the School of Pharmacy, Second Military Medical University, Shanghai, P. R. China.

Extraction and Isolation. The air-dried and powdered ChanSu (7.5 kg) was extracted with 90% EtOH (301). After evaporation of EtOH, the remaining aq. soln. (31) was partitioned successively with CHCl₃ (3 × 31), AcOEt (3 × 31), and BuOH (3 × 31). The BuOH extract (160 g) was subjected to CC (silica gel, gradient CHCl₃/MeOH and AcOEt/MeOH/H₂O): *Fractions A1*–*A5. Fr. A2* (15.24 g) was subjected to CC (*ODS*, MeOH/H₂O 20:80) to afford 5.56 g of crude material which was purified by prep. HPLC (10% MeCN/H₂O, detection at 227 nm): 5 mg of **1.** *Fr. A3* (9.34 g) was subjected to CC (*ODS*, MeOH/H₂O, detection at 225 g of crude material which was purified by prep. HPLC (8% MeCN/H₂O, detection at 230 nm): **2** (5 mg) and **3** (15 mg).

N-[2-(5-Hydroxy-1H-indol-3-yl)ethyl]urea (= Bufoserotonin A; 1): Colorless, amorphous powder. M.p. 156–158° (MeOH). UV (MeOH): 221, 277, 300. ¹H- and ¹³C-NMR:*Tables 1* $and 2. HMBC (500 MHz, (D₆)DMSO): H–N(1)/C(2), C(3), C(3a), C(7a); H–C(2)/C(3), C(3a), C(7a); H–C(4)/C(3), C(5), C(7a); H–C(6)/C(4), C(5), C(7a); H–C(7)/C(3a), C(5); CH₂(8)/C(9), C(2), C(3), C(3a); CH₂(9)/C(8), C(3), C(11). ESI-MS: 220.1 (<math>[M + H]^+$). HR-ESI-TOF-MS: 220.1091 ($[M + H]^+$, C₁₁H₁₄N₃O₂⁺; calc. 220.1085).

$$\begin{split} & 8 - \{[2-(5-Hydroxy-1H-indol-3-yl)ethyl]amino\} - 8 - oxooctanoic Acid (= Bufoserotonin B; 2): Colorless, amorphous powder. UV (MeOH): 236, 309. ^{1}H- and ^{13}C- NMR: Tables 1 and 2. HMBC (500 MHz, (D_6)DMSO): H-N(1)/C(2), C(3), C(3a), C(7a); H-C(2)/C(3), C(3a), C(7a); H-C(4)/C(5), C(6), C(7a); H-C(6)/C(4), C(5), C(7a); H-C(7)/C(3a), C(5); H-C(8)/C(9), C(2), C(3), C(3a); H-C(9)/C(3), C(8), C(11); H-C(12)/C(11), C(13), C(14); H-C(13)/C(11), C(12), C(14); H-C(14)/C(13); H-C(15)/C(14); H-C(16)/C(17), C(18); H-C(17)/C(16), C(18). ESI-MS: 333.2 ([M+H]^+). HR-ESI-TOF-MS: 333.1819 ([M+H]^+, C_{18}H_{25}N_2O_4^+; calc. 333.1813). \end{split}$$

N-{5-Acetyl-1-{2-(5-hydroxy-IH-indol-3-yl)ethyl}-IH-pyrrol-3-yl/acetamide (= Bufoserotonin C; **3**): Brown amorphous powder. M.p. 182–185° (MeOH). UV (MeOH): 221, 292, 302. IR (KBr): 3000–3500 (OH, NH), 1706, 1626, 1596, 1579, 1538, 1497, 1468, 1436, 1349, 1280, 1245, 1227, 1194, 1159, 1127, 948,

2430

Helvetica Chimica Acta – Vol. 90 (2007)

840. ¹H- and ¹³C- NMR: *Tables 1* and 2. HMBC (500 MHz, (D₆)DMSO): H–N(1)/C(2), C(3), C(3a), C(7a); H–C(2)/C(3), C(3a), C(7a); H–C(4)/C(3), C(3a), C(5), C(6), C(7a); H–C(6)/C(4), C(5), C(7a); H–C(7)/C(3a), C(5); H–C(8)/C(9), C(2), C(3), C(3a); H–C(9)/C(3), C(8), C(11), C(14); H–C(11)/C(9), C(13), C(12), C(14), C(1''); H–C(13)/C(11), C(14), C(1''); H–N(1')/C(11), C(12), C(13), C(21); H–C(1')/C(14), H–C(3')/C(2'); H–C(2'')/C(14), C(1''). ESI-MS: 326.3 ($[M+H]^+$), 348.2 ($[M+Na]^+$). HR-ESI-TOF-MS: 348.13352 ($[M+Na]^+$, C₁₈H₁₉N₃O₃Na⁺; calc. 348.13349).

REFERENCES

- [1] A. Dasgupta, A. Wahed, L. Culton, M. Olsen, A. Wells, J. K. Actor, Clin. Chim. Acta 2002, 324, 51.
- [2] P. Zhang, G. Zheng, Y. Liu, D. Wang, N. Liu, M. Yoshikawa, Chem. Pharm. Bull. 2005, 53, 1582.
- [3] R. S. Xu, 'Chemistry of Natural Products', Science Press, 1997, p. 303.
- [4] P. Zhang, Z. Cui, Y. Z. Liu, Y. Sheng, Journal of Shenyang Pharmaceutical University 2006, 23, 216.

Received August 2, 2007